Going Domestic: Why Builders Want American-Made PV Wire

If you’ve been paying attention, you’ve likely seen one news story after another hyping up the U.S. solar industry. 

We’ve seen years of growth as clean energies like wind and solar take over new generating capacity. In 2024, for example, solar comprised two-thirds (66%) of U.S. electricity-generating capacity additions. Overall, the solar industry installed about 50 GWdc of capacity last year, hitting a new one-year record. 

Tailwinds and Headaches 

So, what’s driving companies, utilities, and communities to dive into solar energy? As it turns out, several factors combined to get us here. 

The Inflation Reduction Act (IRA) has had a couple of years to come into form. Incentives made through the program extended and broadened solar tax credits, making large-scale solar projects a better investment. 

The IRA also created measures to develop sustainable domestic supply chains for solar panels, racking, and wire. Previously, solar companies imported foreign solar components, dealing with everything from long delays to questionable quality. The costs were lower, but the industry struggled. 

Today, domestic manufacturing is taking a monumental step forward. Recently, the SEIA announced the U.S. had reached a critical manufacturing milestone. Domestic solar module production capacity hit 50 GW, large enough to meet current U.S. demand. Backed by Section 45X and Section 48C tax credits, incentives bolster an already booming industry

Despite some potential governmental headwinds, industry experts are bullish on solar energy’s future. 

Does Buying Domestic Matter? 

The U.S. is encouraging developers to use American-made goods, including PV wire. But does domestically produced wire warrant the higher cost? 

In many cases, the short answer to that question is yes. Although all PV wires may look similar, subtle details impact quality, lifespan, and performance. We must also consider project scopes, including timelines, budgets, locations, and job requirements. 

Depending on the situation, American-made PV wire could be a cost-saver. 

Quality and Build 

Solar wire made in the United States meets or exceeds Underwriter Laboratories, National Electrical Code (NEC), and ASTM standards, including: 

UL 4703 – This UL standard is specific to PV wire. UL 4703 tests a wire’s ability to handle sunlight exposure, high temperatures, weather, and other threats. 

UL 1581 – Also known as the VW-1 test, UL 1581 is a vertical flammability test. Essentially, UL 1581 determines how much a flame propagates (spreads) along a wire section. 

ASTM B-1, B-3, B-8, and B-33 – These wire configuration standards correspond to specific wire types. In order, they are hard-drawn copper (B-1), soft-drawn copper (B-3), concentric lay twisted strands (B-8), and tinned copper (B-33). 

American-made PV wire undergoes heavy scrutiny, resulting in high transparency. Additionally, strict standards add a layer of safety to every product, ensuring the wire does what it should. This may not be the case with products shipped from overseas, as other countries’ standards may be less stringent. 

NEC Section 691 – This portion of the NEC corresponds to several aspects of utility-scale solar sites with generating capacity over 5 MW. It covers factors like operating voltages, disconnects, fire mitigation, engineering, and other critical safety measures. 

Supply Chains and Lead Times 

Timelines matter – whether it’s a utility-scale solar array or a small community solar project. 

One massive advantage American-made products have is their shorter supply chains. Because the manufacturing and shipping are both within the U.S., production lead times tend to be much shorter. Shipping times are also shorter because products don’t have to travel by boat to the United States. 

On top of the shorter shipping and lead times, buying from domestic manufacturers helps developers avoid tariffs and duties. Importers often pay tariffs on materials from other countries, adding costs to the products they buy. Duties, on the other hand, are taxes paid on imported goods. 

Domestic production is also handy if problems arise. When customers find defects in their solar wire, they can return it to the manufacturer easily. Because the route is much shorter, the amount of time it takes to switch the wire is faster. Cutting a weeks-long wait down to only a few days is crucial when developers are racing to meet looming deadlines. 

Weighing Costs with Lead Times 

If deadlines aren’t an issue and the company has time to wait, sometimes shipping products from overseas could be an option. 

Buyers take on risks with the purchase, including the threat of geopolitical issues coming into play and tariffs. However, despite longer customer lead times and riskier supply chains, developers could save money on large-scale projects by using imported wire. 

Budgetary Constraints 

Developers endlessly search for ways to deliver the best results with the most savings possible. 

To that end, U.S. materials offer solid production, quality, and price. American-made materials follow a strict production process to ensure higher durability, longer lifespans, and better manufacturing traceability. The result is a product that often lives up to the price point. 

But every dollar counts, especially when you’re dealing with solar systems with hundreds of aisles of panels. Wire is a pretty small piece of the overall budgetary pie, but as projects grow larger, so does the cost of wire. 

Project Requirements 

Sometimes, it isn’t about price, performance, or any other factor – the project just requires domestic PV wire. 

Over the years, solar projects have become more specific, especially as the federal government attempts to bolster domestic manufacturing. As a result, more solar projects are pushing to meet domestic content requirements like BABA. The products called for are then “spec’d in,” requiring developers to source those materials for the project. 

BABA, or the “Build America, Buy America” program, ties funding and tax credits to solar projects. For example, ITCs and PTCs contain language about using American-made materials in the site’s development. We wrote a blog about these rules, which you can find here. 

State and local domestic product incentives could also be in play, depending on the project’s location. 

The Case for Imported Wire 

So, with so much focus on domestic production, is there a place for imported PV wire? 

Imported wire can do the job, but it’s important to ALWAYS work with a trusted, vetted international partner. Different countries have different standards, so it’s on the developer to verify who they buy from is reputable. 

Price – Larger projects call for more wire – often to the tune of hundreds of thousands of feet. Imported wire is generally more cost-effective, reducing overall project costs. 

Access to In-Stock or Unique Products – On occasion, solar projects may call for uncommon wire, which could lead to longer lead times. Overseas vendors may have specialized products in stock, keeping projects moving on time. 

Once again, DO YOUR RESEARCH before purchasing thousands of feet of wire from an international vendor. A trusted partner can meet safety standards and be transparent about their processes, ensuring high quality. 

Small Line Item, Huge Impact 

Wire is a crucial component of any utility- or community-scale solar installation. Without it, electricity doesn’t move from the panels to the electrical grid. 

Buying American isn’t solely about supporting the Red, White, and Blue. Builders get faster shipping, fewer added shipping costs, top-quality products, and peace of mind. 

Some overseas products may have similar quality, but EPCs must do their due diligence. This means building trust and verifying those manufacturers produce high-quality products. 

At the end of the day, not all wire is the same. No matter where the wire comes from, only work with trustworthy manufacturers that meet the highest standards. The result will be better installations, safer projects, and long-lasting performance for decades. 

PV Wire Management Systems Explained

When you’ve got thousands of feet of PV wire strung up for seemingly endless acres, keeping them organized and protected is crucial. 

The best wire management plan relies on understanding the terrain, project size, complexity, layout, and other factors. Depending on the project, solar EPCs have several wire management options, from open-air clips and ties to comprehensive conduits and trays. Regardless of the style, these systems organize and protect cables for the life of the solar system. 

The result? Cleaner, manageable layouts, more efficient repairs and replacements, and safer sites over the long term. 

S Clips 

S clips are a low-cost and effective solution to keep wires and cables in place. 

The clips are usually made from stainless steel, which is strong and resists corrosion, making them great for outdoor use. Other options include aluminum alloys or even UV-resistant plastics. 

Crews like S clips because they’re easy to install without tools, attaching to the back of the solar panel or onto the racking. They’re also reusable, allowing workers to remove and reattach clips during maintenance, repairs, or replacements. 

Multi-Faceted Fasteners 

The allure of S clips lies in their simplicity. 

They’re small enough to hide under panels and along racking and perform well across many environments and temperatures. Certain constructions also work in harsh areas, including in or near salt water. 

Unlike more expensive wire management systems, S clips don’t require other tools to install. This makes them easy for even inexperienced workers to use. Removal is almost as easy, requiring only a screwdriver to pop the clip off the panel or racking. 

Though the clips only hold a few wires in place, they do an excellent job of preventing sagging along the cable line. However, crews must be careful to avoid accidental nicks or scrapes caused by the clips. Normally, they’re coined or smoothed to prevent damage but could cause problems over time or during severe weather. 

Hanger Systems 

Like S clips, wire hanger systems hold wires in place, but do it on a larger scale. 

Made from galvanized steel and coated with PVC, hangers are extremely durable and weather-resistant. The PVC protects the underlying steel core against exposure and ensures wires stay damage-free. 

Unlike S clips, which can hold two or three wires, hangers can hold many safely – including large-gauge cables. They’re cost-effective, reusable, easy to install without tools, and can bend to fit nearly any configuration. Hangers also perform well across many environments, including challenging terrain. 

To install hangers, workers first need to install a messenger wire. Though it doesn’t carry current, the steel cable shoulders the weight of all the cables to reduce sagging. It also provides a steady, safe spot to mount hangers that isn’t part of the racking or the panel itself. Once the messenger wire is in place, workers bend the hanger into the shape they need and hang it. 

Cable Ties and Locks 

Most people are familiar with plastic or nylon zip ties used for DIY projects, but solar cable ties are much stronger. 

Made from high-quality, durable, and UV-resistant plastic, these one-time-use ties secure cables directly to the solar racking. They’re chemical, water, and sunlight resistant, and more rugged ties could work in colder temperatures. 

Keep in mind that not all cable ties are equal. Low-quality ties, like the nylon ones hiding in your junk drawer, will eventually become brittle, causing them to break. This is especially true in areas where snow and cold weather are a threat and regions with high UV exposure. 

Unlike S clips and hangers, cable ties are a one-and-done product. Crews must replace them every time they complete work. 

Cable Locks 

Cable locks use a tool-free locking mechanism to hold ties in place, with additional room for slack. 

Depending on the company and the style, cable locks can look or act differently, but the overall logic is the same. Most are easy to install and reusable, utilizing locks and tie lines to hold cables in place and prevent accidental removal. 

Despite the similar design to cable ties, cable locks will last for the life of the panels, generally 20 to 25 years. 

Cable and Wire Trays 

Sometimes, open-air solutions aren’t the best way to protect solar wires.  

In those situations, especially in harsh environments and areas where digging isn’t possible, wire and cable trays make all the difference. 

Unlike conduit, which requires digging and burying wires, cable trays are aboveground installations. Workers connect the tray pieces, lay the wire in, and move along. The cables are safe from physical damage, including scrapes, abrasions, crushing, and even pests like rodents. Beyond physical damage, trays protect cables from wind, snow, sun, and other weather-related issues. 

Solar developers can choose either metal or plastic trays, depending on how much flexibility and strength they need. But no matter what material installers select, the cables inside are safe and organized. Best yet, if wires need replacement, workers can quickly access the tray. 

Conduit 

For the ultimate utility-scale solar cable protection, conduit is king. 

To install conduit, workers dig trenches in the ground and lay metal or PVC tubing. Next, workers fish the PV wire through the conduit from the solar panel to the combiner box. The resulting installation offers stellar protection from crushing, abrasion, UV, temperature changes, chemicals, and pests for the wire’s usable lifespan. 

Conduit keeps wire safe and sound but is more expensive than other wire management methods and is slower than open-air methods. Conduit also doesn’t work for certain solar sites, including those with rough terrain or brownfield sites. 

Wire Management Boxes 

Protecting wire is vital, but connection points are equally important. 

Combiner boxes are a staple at commercial, industrial, and utility-scale solar installations. Depending on the layout, they can hold dozens of wires in place, alongside fuse assemblies, buses, and even system monitoring equipment. 

When installing wire management boxes, placement is important. Every installation is different, and boxes must be ready to address unique challenges. From paint color and box size to breather vent placement and mounting position, every decision impacts performance and lifespan. 

Many Options, One Mission 

No matter what solutions installers choose, the goal is always to prevent wire damage. 

Wire management systems do a lot to prevent damage, but they aren’t perfect. Accidents happen, nicks occur, and wires pinch, leading to potentially dangerous situations like arcs, faults, and other issues. 

Damaged wires don’t always immediately cause problems – nicks in a conductor’s insulation take time to develop. Leaks, corrosion, pinches, abrasions… they can all eventually create delays, lost profits, and put people at risk. 

Crews should trust monitoring systems to track trends and spot abnormalities but should perform scheduled inspections, too. Beyond looking for obvious damage, workers should be on the lookout for other issues, including: 

  • Sharp edges on clips, ties, locks, and other materials 
  • Signs of aging on wire management systems, including peeling coatings, insulation pulling away, chipping, or nicks 
  • Damage to PV wire conductors, such as pinching, abrasions, nicks, and other wear 

Most importantly, work with local code departments and follow NEC guidelines. Keeping an eye on the regulations will ensure that teams safely manage solar power wires and cables.

Installing PV Wire: Direct Burial, Hangers, or Conduit?

PV wire doesn’t seem like a big deal, but moving generated power from solar panels to the electrical grid would be impossible without it. 

To the untrained eye, installing thousands of feet of wire seems like a pretty straightforward process. But maximizing its performance depends on several factors, including: 

  • Environmental Conditions  
  • Cost Considerations  
  • Ease of Installation  
  • Project Size

Depending on the situation, solar EPCs have a few installation options, including direct burial, conduit, and hangers. 

Direct Burial Installation 

When solar developers directly bury PV wires, they install them in trenches underneath the panel rows. 

Direct burial wire is designed for underground installation without a conduit. To ensure the wire is up to the task, it undergoes rigorous testing to earn a specific UL mark. In this case, the mark signifies the wire can withstand abrasions, crushing, moisture, chemicals, and other hazards. 

Solar companies like direct burial wire because it’s a low-cost and easy way to install electrical wiring. Workers only need to dig a trench along the panel aisle near the racking, place the wire, and cover it back up. But as easy as it is, direct burial wire isn’t appropriate for every application. 

The Good and the Bad of Direct Burial Wire 

Soft soil compositions with relatively few rocks are the best conditions for direct burial wire. Sandy soil is also a good option because it drains quickly. Drainage is vital for underground wire installations because moisture can damage wire insulation and jacketing over time. 

Direct burial wires also run the risk of damage from environmental hazards. Sharp rocks could nick wire insulation, allowing moisture to get in. Large rocks can crush the wire and its insulation, hurting performance. Even damage caused by rodents chewing on the wire can potentially create faults. 

Damage could lead to less electricity generated and create unsafe conditions. It also costs crews time, money, and long-term production since they must visit the site, dig up damaged wires, and repair or replace them. 

Underground Conduit Installation 

Conduit installation is similar to direct burial, but instead of putting the wires in the ground, they’re fished through metal or PVC tubes. 

The tubing provides an additional layer of protection on top of the wire’s standard thick insulation and works well in rocky, moist, or corrosive environments. Typically, conduit is used when crushing, abrasion, or other threats are an issue. Beyond soil, conduit protects the wire from rodents, temperature fluctuations, and accidental damage from digging. 

Unlike direct burial situations, workers can easily replace or repair wires if something goes wrong – without digging. Crews only need to pull the wire out, replace it, and fish it through the conduit pathway. 

Like any other electrical project, local regulations may dictate conduit use. Requirements could change from one municipality to the next. The National Electrical Code (NEC) also has specific standards, so keep them in mind. 

More Protection, Higher Costs 

Encasing wires in conduit offers better protection than insulation alone, but makes solar projects more expensive. 

Not only do you have to buy enough for the entire site, you need people to install it. This means digging trenches, burying the conduit, then pulling wires through the tubing to connect everything. And as utility- or community-scale solar sites get bigger, so do the associated costs and timelines. 

Conduit is also not as flexible as direct burial wire, making it harder to use on slopes and curves. Shovels or excavators could also accidentally puncture metal or PVC conduit, damaging the contained wire. 

Cable Hangers 

Hangers come in many shapes and sizes, using galvanized steel coated with thick PVC to safely hold PV wires in place from the solar panel to the combiner box. 

Unlike conduit, workers can easily bend hangers to fit whatever shape they need. And unlike direct burial and conduit solutions, hangers don’t require any digging. They connect directly to the racking underneath the solar panels and provide a cost-effective way to string PV wire quickly across difficult terrain. This makes them useful in areas where the ground isn’t suitable for digging, like brownfields

Depending on the number of wires carried along the pathway, messenger wires might be necessary. Unlike PV wire, messenger wires don’t carry any current – they provide strength and support to keep wires in position. 

Maintenance and repair work is also easier for operators because the wires live in the open air. Workers can find damaged wires, remove them from the hanger system, and replace them without additional equipment. 

PV Wire Hanger Considerations 

As with any electrical job, PV wire hangers fall under NEC guidelines. 

According to NEC Article 690.31 (C) (1) (b), “Exposed cables sized 8 AWG or smaller shall be supported and secured at intervals not to exceed 600 mm (24 inches) by cable ties, straps, hangers or similar fittings.” 

The rules are slightly different for wires bigger than 8 AWG, allowing hangers up to every 54 inches. For added support, messenger wires can help carry some of the weight. 

Depending on the location of the solar array, code enforcement could apply other rules. Contact your local codes department to avoid any potential issues. 

Above-ground wires also face several potential issues, including contact with people and vehicles and severe weather. Buried wires are typically hidden, but hanging wires don’t have the same type of protection. This leaves them open to damage from sun, wind, rain, snow, vandalism, and accidental contact. 

What Impacts Solar Wire Installation? 

No two installations are alike, but knowing what you’re getting into before putting shovels in the ground can make mistakes avoidable. 

Environment 

Soft soil without much moisture is well-suited for direct burial projects. If the soil is rocky, struggles with drainage, or risks contact with chemicals, conduit makes sense. If the land is rocky, too wet, or at a brownfield site, hangers are a safe, cost-effective choice. 

Cost 

Direct burial is a low-cost option but requires laborers to dig trenches. Hangers are also cost-effective but leave wire out in the elements and exposed to other dangers. 

Conduit is pricier and requires labor, time, and equipment. However, it offers solar systems the best protection from damage and exposure. 

Project Size 

Bigger sites mean more work and longer timelines. Worse yet, delays can occur if crews run into unexpected issues. 

Smaller community-scale solar energy projects take less time to wire compared to utility-scale solar projects. However, smaller sites may benefit from the added protection conduit offers without a massive hit to the bottom line. As sites become larger, costs increase dramatically, forcing project developers to limit expenses. 

Code Regulations 

Although the NEC is an excellent guidebook, follow local and state codes to avoid mistakes. 

Failing to do so could result in violations, leading to work delays, fines, or other problems. 

Know Your Surroundings 

As solar sites spring up across the United States in brownfields, farmland, and even on water, teams should carefully determine how to set up their arrays.

Whether it’s a utility company with a small solar farm in the rolling hills or a large-scale developer repurposing brownfields, having the right manufacturing partner makes a huge difference. 

Good partners understand community, industrial, and utility-scale installations and act as a guide. They can also field questions and offer insight throughout the blueprinting, development, and troubleshooting processes. 

Most importantly, companies can keep every solar job on time and within budget.

Making the Case for Prefabricated Solar PV Wire Solutions

Driving past a solar installation sometimes feels daunting. Arrays can have dozens of rows of panels, stretching on for what feels like miles. 

Not only are some solar energy projects massive, but they’re also complex. Companies have hundreds of variables to consider, and the process takes years from initial planning to completion. They also cost millions of dollars between installing solar panels, securing permits, doing tests, and paying employees. 

Solar EPCs always try to manage costs, reduce installation times, and produce better results. While hard costs like solar panels and PV wire have fallen over the years, soft costs like permitting, taxes, and labor haven’t shown the same decline. 

How can companies save money on soft costs? The answer may be found in the wire holding everything together. 

Small Cost, Massive Impact 

When we look at the total cost of a utility-scale solar energy system, PV wire is low on the list. 

However, choosing the right solar wire can save time and money on your solar project installation. For example, prefabricated wires have a higher upfront cost but slash installation times. 

So, how do bundled, prefabricated solutions make the most of their engineering to save time and money? It all comes down to ease of use, consistency, and automation. 

When combined, teams can shave hours and dollars off their projects without additional effort. 

Why Do Installers Choose Pre-Fab Solutions? 

Despite all the planning and effort, sometimes you get what you pay for. 

Using single PV cables for a rooftop solar system is fine, but they can slow a utility-scale project to a crawl. Bundled pre-fab cables remove constant trips up and down each row, replacing them with one pass. 

For the average project, not making multiple trips shaves hours off each row and days off a project. But beyond faster installations, why are solar companies choosing pre-fab wire products? 

Wires are Pre-Cut and Factory Assembled 

What is the difference between a pair of jeans purchased off the rack and a custom-tailored pair? 

Jeans from the store come in many sizes, but they only offer a general fit. Meanwhile, custom-tailored jeans are specifically manufactured to fit you and only you. The same concept applies to buying single wire reels versus pre-fab bundled wire. 

Manufacturers cut pre-fab bundled cable to specific lengths matching the project’s layout, preventing wasted wire. The manufacturer also properly installs connectors, performs quality control testing, adds labels, and mounts the cable to reels. 

Not only are the manufactured cables ready to install as soon as they reach the job site, but workers don’t have to cut, crimp, or install connectors themselves. 

Less Room for Mistakes 

Employees on the job site often have varying skill levels and experience. 

Small mistakes, like a loose connection, can have dangerous implications. Fires, arcs, and shorts may cause severe damage and cost hundreds of thousands of dollars to repair or replace. 

Factory testing eliminates many issues before installation occurs. The manufacturer is also much more consistent than multiple workers on the job site. 

The other thing installers like about pre-fab wire solutions is the exact measurements used to cut each wire to length. Single wire reels often create waste during installation. Despite the higher cost, pre-fab solutions limit scrap and speed up installs because workers can immediately use them. 

Building on Labor Savings 

Pre-fab solar power cables help workers make fewer mistakes, but do they make installers faster?  
 
Instead of walking cables one at a time down the row to each solar panel, installers make one trip with all the cables. Once they reach the end of the row, they walk back down and connect each wire in the bundle to its corresponding panel. Customers can have cables marked as well, further reducing accidents and miscommunication. 

Pre-fab solutions, including bundled wire, limit opportunities for mistakes. The faster speeds also reduce labor costs dramatically, sometimes by as much as 80%.

Besides allowing works to move more swiftly on the worksite, pre-fab solutions also make solar installation teams more efficient. In many states, including those across the Northeast, solar projects ramp up in the spring and slow down toward the end of fall for the winter season. The ebb and flow of project seasonality, which is a challenge for many solar companies. 
 
When teams are using pre-fab bundled wire, projects are completed more quickly with fewer people. In turn, crews can work on more jobs during the busy season, and companies benefit from better labor allocation and shorter ramp-up and ramp-down times. 

Safer Installs 

Prefabricated PV wires are easier to work with, simplifying the job. 

Think about field-made connectors for a second. Depending on the workers’ experience, they could make mistakes as they strip, crimp, and attach connectors to the wires. While issues may not appear immediately, they could develop over the long term, limiting power generation. 

Bundled solutions remove the guesswork from the installation process. Workers only attach the connectors to the panels and the combiner box to power the system. 

Beyond being easy to use, prefabricated bundled wire is also cleaner, as there’s only one bundle of wires to worry about. The result is an organized installation with fewer mix-ups and nicer-looking outcomes free of tangled wire. 

Short- and Long-Term Savings 

Pre-fab wire solutions like bundled cable cost more than single cable options but save time and money on labor. 

Single wire reels work for small residential solar panel systems but bog down larger projects, like utility and community solar. Running single-wire reels is inefficient, more error-prone, and opens the door for waste. 

Combining the wires for a row together shortens installation times and gets workers on and off the site faster. Best yet, potential savings increase as the projects get bigger. 

Bundled Wire Leads to Better Installs 

The United States relies on clean energy more than ever, so investing in solar improvements is critical. 

Solar array technology has improved dramatically, from bifacial panels and tracking systems to more effective connectors and accessories. The same can be said for PV wire, too. 

Bundled PV wire solutions allow employees to do better work faster. Solar installations can then produce energy sooner, leading to lower electric bills for communities and businesses. 

That’s good news for everyone.

How Are PV Jumpers and PV Adapters Used in Solar Systems?

When you think about the parts of a solar array, PV jumpers and adapters probably aren’t the first things that come to mind. 

That’s because solar arrays are complex projects relying on thousands of small, often unheralded pieces coming together to produce electricity. Unlike readily seen parts like the panels and racking, jumpers and adapters seem like an afterthought until you need them. 

Despite their small size, PV jumper cables and adapters have a gigantic role in keeping the system working well. Often going unnoticed, they ensure power moves seamlessly from the panels to the combiner box and eventually the grid.

The Low-Down on Solar Jumper Cables 

Solar jumper wire works similarly to jumper cables for cars, transferring electricity from one solar panel to another. 

These short lengths of PV wire have MC4 (or site-specific) connectors on both ends and connect solar panels together along a row. Their job is to connect solar panels to one another, usually the positive and negative terminals on neighboring panels.  

When fully connected, extension cables connect panels into a parallel system to create a series of panels. They also allow more streamlined installations to move power from the panels to the larger electrical grid. 

Jumpers also have a purpose outside community- and utility-scale solar installations. Residential direct current (DC) solar systems use them as a home run to the inverter box and to connect devices through optimizers and micro inverters.  

Made to Order 

Depending on the system, manufacturers can custom-make PV jumper wire to fit specific site demands. 

Although workers in the field can make their own jumpers, it’s tough to ensure quality is the same across the board. Manufacturers remove the guesswork, ensuring every cable is consistent and quality-checked before arriving at the job site. 

The result is a faster installation with fewer mistakes because workers aren’t cutting, crimping, or fitting connectors. 

What are PV Adapters? 

MC4s are among the most common connectors used on solar installations but aren’t the only ones workers may see. 

If the site is older, you may come across older MC3 connectors. MC3 connectors were widely used in the early and mid-2000s but fell out of favor because they didn’t have locking mechanisms. Without a locking mechanism, the connectors could disconnect, resulting in lost power and potentially dangerous situations. 

Other sites may not have connector requirements specified. Companies may try to find cost-effective connectors like MC4s but with subtle differences. 

Solar adapters are critical to unifying the entire site when connectors must be uniform. PV adapters have different connectors on each end, letting workers quickly convert from one connector type to another. 

The wires allow workers to avoid tearing out thousands of feet of wire, replacing countless connectors in the field, or sacrificing power generation. Sites also maintain continuity throughout the installation, limiting the risk of faulty connections or lost power. 

Steady Flows and Time Savings 

Although they’re easy to overlook, prefabricated solar assemblies like PV jumpers and adapters keep solar arrays operating smoothly. 

Jumpers connect individual panels to maintain steady power flows from the panels to the greater system. Meanwhile, adapters ensure every connector is the same across the site to maintain continuity. 

Both save time and money on the job site and ensure the system works as well as it should. Without them, installations and retrofits would be a time-consuming nightmare, leaving the door open for potential site problems. 

When it’s often said the whole is greater than the sum of its parts, these two cables do a pretty good job of keeping solar sites running at peak power.

What Are the Soft Costs of Utility-Scale Solar? 

If you’ve followed the solar energy trend with any interest over the past 10 years, you’ve likely seen a few massive changes in utility-scale solar operations. 

As solar panel technology improves, one question remains: is solar energy becoming cost-effective enough to displace fossil fuels? The answer to that question is a resounding yes, but we can do more to improve costs and expand the solar industry’s reach in the United States. 

While hard costs tied to utility-scale solar power have dropped considerably since 2012, soft costs haven’t seen the same changes. As the price of panels, PV wire, and the overall solar BoS decrease, the money spent on permitting, inspections, and operations become a larger piece of the pie. 

Luckily, many experts believe soft costs can fall with some additional investments, training, and standardization. 

Breaking Down How Utility-Scale Solar Costs Shake Out 

Whenever a solar project gets underway, there are two expense types that the utility needs to keep in mind; hard costs and soft costs. 

Solar Hard Costs 

Hard costs are budgeted into the account, and their prices tend to be fixed. Items that fall into this category are the parts and pieces needed to actually get the solar array up and running, including: 

  • solar modules 
  • inverters 
  • racking and other panel mounting systems 
  • Photovoltaic (PV) wiring 
  • energy storage 

Though it’s safe to say these costs can be counted on to stay in a determined range, higher quality products may come with short-term and long-term savings that could affect soft costs down the line. For example, Sun-Pull’s bundled PV wire can drastically reduce installation time and labor expenses, cutting overall project costs. Over the past decade or so, hard costs have fallen by about 60%. 

However, supply chain issues caused by the pandemic and our subsequent recovery have pushed prices slightly since 2020. 

Solar Soft Costs 

These cover everything else that isn’t a physical part of the solar installation. In the case of a solar installation, a breakdown of soft costs includes: 

  • installation labor 
  • permits and taxes (including sales tax) 
  • sales promotions and new customer acquisition 
  • administrative, marketing, and other overhead expenses 
  • operations 
  • supply chain expenses 

Unlike hard costs, which are somewhat predictable, soft costs are tied to several factors. These could include permitting and inspection fees, hiring and training new workers, money spent on community programs and educational materials, marketing programs to acquire and maintain customers, software, and more. 

Though soft costs have fallen, they have not had nearly the same drop as hard costs. Product prices tend to react more favorably in the face of more available options, better technology, and fewer restrictions. 

Cutting Down on Soft Expenses 

In 2017, the National Renewable Energy Laboratory (NREL) suggested soft costs made up more than 40% of a utility-scale system’s costs. Unfortunately, though overall prices have kept falling, soft costs are still about 36% of total utility solar expenses in 2021. 

If prices are high here, they must be high everywhere, right? Not so much. Utility-scale PV soft costs in the U.S. are still higher than those of other countries with developed solar markets, partially due to a lack of combined efforts. 

There is hope, however. The Department of Energy (DoE) says they can be mitigated with a few changes to get everyone on the same page. This includes standardizing codes and providing more educational opportunities for permit issuers, real estate professionals, and others in nearby industries. It also includes creating more effective integration strategies that make it easier to connect solar arrays to the overall electrical grid. 

Part of the current issue is that plenty of money has been spent to create technology that reduces hard costs but isn’t always applied to reducing soft costs. As with any solution, getting from where we are now to where we’d like to be will involve a few investments. 

Utility-Scale Solar PV Systems Can Benefit from Lower Costs 

The solar industry isn’t alone in its fight to make utility-scale solar more affordable. It will take a concerted effort from the government, private companies, and social organizations to complete. 

It requires the government to reduce the red tape associated with permitting and inspections. Companies need to look for organizational savings wherever possible, including software platforms that streamline operations and simplify processes where possible. Even variable expenses like marketing, attracting new customers, staffing, maintenance, and insurance offer opportunities to reduce overhead. 

The goal should be to make utility-scale solar energy and other renewables accessible to more people. To accomplish it, we must do our part to keep installation costs down and encourage investment.