Will Solar Interconnection and Permitting Improve in 2025?

In 2024, the Solar Energy Industries Association (SEIA) said the United States added about 50 GWdc of grid capacity. This was the second straight year solar energy set records, with utility-scale solar adding more than 41 GWdc. 

The signs for solar EPCs look great, but there’s still plenty of room for improvement. Despite excitement for solar, the industry faces permitting and interconnection concerns. 

A Two-Headed Beast 

Permitting and interconnection requests are a 1-2 gut punch for many solar developers and EPCs. 

Developers often find themselves buried in red tape during the permitting process. From building, zoning, and electrical permits to land disturbance studies, compatibility reports, and financial data, it’s a seemingly unending process. It isn’t specific to local government, either; federal and state approvals also matter. 

The other problem is interconnection. Interconnection is the process of attaching solar sites to the larger electrical grid. It includes several studies assessing how solar sites could impact grid operations. Depending on the results, developers may have to alter projects or wait for additional studies. 

Worst of all, developers may have to pay for the interconnection after waiting up to five years for results. Not only is the process expensive, but some utilities may be unwilling to help solar sites connect to the grid.  This leads to even more developer costs and delays. 

Could Help Be Coming? 

We’re still far from a perfect system, but the government wants to make solar development easier. 

The Inflation Reduction Act became law in August 2022, creating more streamlining opportunities and funding. At the same time, the Federal Energy Regulatory Commission (FERC) is pushing to simplify interconnection and permitting. 

This is crucial for the solar industry and the country’s growing electricity demand. Data centers, EVs, and hotter temperatures have pushed electricity use to new heights. Renewables like solar and wind could potentially hold the keys to energy development, but we must collaborate. 

What’s the Current Solar Landscape? 

It shouldn’t be surprising to hear solar capacity waiting in the queue is skyrocketing. 

In December 2023, about 2,600 GW of generation and storage capacity were waiting for grid connection. Of this total, 95% were solar, wind, or battery sites. In fact, solar and battery projects made up 80% of all additions in the queue. 

At the same time, interconnection request times are exploding. In 2008, the average wait was less than two years. For projects built between 2018 and 2023, wait times were about four years. By the end of 2023, projects could languish for as long as five years. 

So, what gives? 

Clunky and Costly 

Electricity use is rapidly rising. But what’s making it difficult for solar operators and utilities to increase grid capacity? 

The Federal Energy Regulatory Commission (FERC) believes it can pinpoint our nation’s electricity generation problem to a few key issues. 

For example, FERC has highlighted the number of interconnection requests these days. In April 2024, Berkeley Lab said around 11,600 projects were waiting to connect, totaling 2,600 GW. As more projects join the queue, delays will keep growing. 

The agency highlighted other issues, including transmission capacity, delayed expansion and upgrade investments, and high interconnection costs. Unfortunately, this results in long delays in the interconnection queue and a higher risk of project withdrawals. 

Permitting Problems 

It’s difficult to break ground when the permitting process is a gauntlet. 

States, counties, and municipalities have different approaches to solar energy. While some embrace it, others adopt a “not in my backyard” stance. Though several counties have gone so far as to ban utility-scale solar, no state has banned large-scale solar projects. 

Although federal regulations govern some aspects of solar development, individual states are different. Several, including Utah, Colorado, Arizona, and New Mexico, have adopted and implemented federal rules. Other states like California and Nevada use federal regulations and supplement them with state-level ones. 

With so many moving parts, solar developers can struggle to keep track of things. Luckily, government organizations like the Environmental Protection Agency (EPA) have compiled databases, guides, and procedures at the state and federal levels. 

Addressing Problems 

Thanks to inconsistent guidelines and processes, there’s plenty of work to sort everything out. 

A single entity, government, or industry organization can’t solve our problems. The cure requires a top-down approach with input from everyone, but someone has to take the lead. 

Interconnection 

SEIA is collaborating with FERC and the Department of Energy to create reforms to improve interconnections. As a result, FERC is pushing interconnection rules to reduce red tape and integrate renewable energy faster. 

The moves coincide with several Independent System Operators struggling to add capacity, including CAISO, NYISO, and MISO. These issues lead to long delays and other problems. As more interconnection applications flood in, ISOs must make the pieces fit without overloading aging infrastructure. 

Updated Rules 

FERC’s rule changes include critical updates to Order 2023 that improve how interconnection requests are handled. 

Under previous rules, the system handled interconnection requests using a “first in, first out” model. While the system works when the queue is short, problems quickly develop as requests pile up. Additionally, under the “first in, first out” system, projects didn’t need viable projects to apply. 

The result was a slow, clunky system. 

Order 2023-A clears up some confusion and allows for faster studies. Under 2023-A, the system installs a “first ready, first served” format. This requires developers to have funding, property, and other assets ready before applying. 

Once the request is in, another Order 2023-A update kicks in. Previously, studies took place one at a time. Order 2023-A introduced study batching, allowing grid operators to perform several studies simultaneously. The move saves time, money, and labor costs by letting grid operators make several decisions (and upgrades) together. 

Tightening Up 

Improving the review process saves time, but what happens if someone drops the ball? 

Under Order 2023-A, developers must be more prepared with financing in place alongside additional site information. By forcing developers to do more leg work before submitting, operators see fewer speculative projects. 

But the onus isn’t entirely on developers to keep the interconnection queue short. Transmission providers must be more prepared to address studies. If operators delay reviews or miss a deadline, they can face penalties. 

Solar Permitting 

Improving the interconnection process is only half of the solution. To get to the heart of the matter, officials must tackle permitting, too. 

One way of making permitting more efficient is to make it more welcoming – starting with the cost. One such program is SolSmart, funded by the DoE’s Solar Energy Technologies Office.  

SolSmart is a nationwide initiative to improve solar development by assisting municipalities, counties, and other organizations. 

By helping local authorities better understand and adopt national practices, SolSmart reduces soft costs like permitting, zoning, and more.  

Its success has led to further investment, including an extension allowing the program to operate through 2027. 

Kicking Up the IRA and BIL 

Two Biden-era laws are rounding into form, with provisions to make solar development more efficient. 

The Inflation Reduction Act and the Bipartisan Infrastructure Law have funding attached to them specifically for improving and modernizing the grid. The funding also improves the permitting process for federal lands to encourage solar development there. 

Additionally, BIL and IRA funding includes several incentives to promote viable solar projects and expedite queues. 

Other Potential Reforms 

It didn’t make it out of the Senate, but the Energy Permitting Reform Act of 2024 had several provisions for solar development and permitting. 

The bill proposed accelerated leasing and permitting on federal lands and establishing clear deadlines for renewable projects like PV systems. It also simplified renewable energy environmental reviews, which can take months to years to complete. 

Most importantly, the bill would have codified a 50 GW renewable energy generation goal for federal lands by 2030. 

Making the Most of the Situation 

Permitting and interconnection processes are difficult and possibly broken. But it doesn’t mean solar developers should sit idly and wait for conditions to improve. 

Develop Partnerships 

The easiest way to navigate solar development red tape is by building good relationships with government sources. Local, state, and federal departments have similar goals but solve problems differently. 

Developers should work closely with each layer of government to get approval for each step. These sources also come in handy if rules change. Additionally, resources like the RAPID database help with best practices, permitting documents, and other information. 

Stay Prepared 

Preparation is paramount, especially as FERC prioritizes viable, well-planned projects. Filings should contain as much information as possible, including assessments, environmental surveys, funding sources, and land data. 

But solar contractors and developers don’t embark on utility-scale projects alone. They build teams with strong strategic partners, including municipalities, interconnecting utilities, and state officials. When speed bumps approach, these partners can help with documentation and other preparation. 

Know Your Permits 

Permit requirements and combinations differ across municipalities, counties, and states. For example, agencies like the Bureau of Land Management (BLM) have processes specifically related to building on federal land. The RAPID database is, once again, an excellent resource for the latest permitting and bulk transmission regulations. 

During difficult preparations, solar companies should hire an experienced consultant. Find a professional in the state where the project will take place and rely on them to help guide the permitting process. Hiring a knowledgeable organization may be expensive but could reduce delays.  

Be Ready for Anything 

The truth is nothing in the solar industry stays the same for long. 

Governments are moving quickly to improve regulations and permitting, with FERC and other groups fixing interconnection methods. But with so much happening around us, keeping up with rapidly changing rules is essential. 

Be prepared, but ready to adapt when necessary. Preparing for every outcome isn’t possible, but adjusting quickly helps developers roll with the punches, limiting costly delays.

Going Domestic: Why Builders Want American-Made PV Wire

If you’ve been paying attention, you’ve likely seen one news story after another hyping up the U.S. solar industry. 

We’ve seen years of growth as clean energies like wind and solar take over new generating capacity. In 2024, for example, solar comprised two-thirds (66%) of U.S. electricity-generating capacity additions. Overall, the solar industry installed about 50 GWdc of capacity last year, hitting a new one-year record. 

Tailwinds and Headaches 

So, what’s driving companies, utilities, and communities to dive into solar energy? As it turns out, several factors combined to get us here. 

The Inflation Reduction Act (IRA) has had a couple of years to come into form. Incentives made through the program extended and broadened solar tax credits, making large-scale solar projects a better investment. 

The IRA also created measures to develop sustainable domestic supply chains for solar panels, racking, and wire. Previously, solar companies imported foreign solar components, dealing with everything from long delays to questionable quality. The costs were lower, but the industry struggled. 

Today, domestic manufacturing is taking a monumental step forward. Recently, the SEIA announced the U.S. had reached a critical manufacturing milestone. Domestic solar module production capacity hit 50 GW, large enough to meet current U.S. demand. Backed by Section 45X and Section 48C tax credits, incentives bolster an already booming industry

Despite some potential governmental headwinds, industry experts are bullish on solar energy’s future. 

Does Buying Domestic Matter? 

The U.S. is encouraging developers to use American-made goods, including PV wire. But does domestically produced wire warrant the higher cost? 

In many cases, the short answer to that question is yes. Although all PV wires may look similar, subtle details impact quality, lifespan, and performance. We must also consider project scopes, including timelines, budgets, locations, and job requirements. 

Depending on the situation, American-made PV wire could be a cost-saver. 

Quality and Build 

Solar wire made in the United States meets or exceeds Underwriter Laboratories, National Electrical Code (NEC), and ASTM standards, including: 

UL 4703 – This UL standard is specific to PV wire. UL 4703 tests a wire’s ability to handle sunlight exposure, high temperatures, weather, and other threats. 

UL 1581 – Also known as the VW-1 test, UL 1581 is a vertical flammability test. Essentially, UL 1581 determines how much a flame propagates (spreads) along a wire section. 

ASTM B-1, B-3, B-8, and B-33 – These wire configuration standards correspond to specific wire types. In order, they are hard-drawn copper (B-1), soft-drawn copper (B-3), concentric lay twisted strands (B-8), and tinned copper (B-33). 

American-made PV wire undergoes heavy scrutiny, resulting in high transparency. Additionally, strict standards add a layer of safety to every product, ensuring the wire does what it should. This may not be the case with products shipped from overseas, as other countries’ standards may be less stringent. 

NEC Section 691 – This portion of the NEC corresponds to several aspects of utility-scale solar sites with generating capacity over 5 MW. It covers factors like operating voltages, disconnects, fire mitigation, engineering, and other critical safety measures. 

Supply Chains and Lead Times 

Timelines matter – whether it’s a utility-scale solar array or a small community solar project. 

One massive advantage American-made products have is their shorter supply chains. Because the manufacturing and shipping are both within the U.S., production lead times tend to be much shorter. Shipping times are also shorter because products don’t have to travel by boat to the United States. 

On top of the shorter shipping and lead times, buying from domestic manufacturers helps developers avoid tariffs and duties. Importers often pay tariffs on materials from other countries, adding costs to the products they buy. Duties, on the other hand, are taxes paid on imported goods. 

Domestic production is also handy if problems arise. When customers find defects in their solar wire, they can return it to the manufacturer easily. Because the route is much shorter, the amount of time it takes to switch the wire is faster. Cutting a weeks-long wait down to only a few days is crucial when developers are racing to meet looming deadlines. 

Weighing Costs with Lead Times 

If deadlines aren’t an issue and the company has time to wait, sometimes shipping products from overseas could be an option. 

Buyers take on risks with the purchase, including the threat of geopolitical issues coming into play and tariffs. However, despite longer customer lead times and riskier supply chains, developers could save money on large-scale projects by using imported wire. 

Budgetary Constraints 

Developers endlessly search for ways to deliver the best results with the most savings possible. 

To that end, U.S. materials offer solid production, quality, and price. American-made materials follow a strict production process to ensure higher durability, longer lifespans, and better manufacturing traceability. The result is a product that often lives up to the price point. 

But every dollar counts, especially when you’re dealing with solar systems with hundreds of aisles of panels. Wire is a pretty small piece of the overall budgetary pie, but as projects grow larger, so does the cost of wire. 

Project Requirements 

Sometimes, it isn’t about price, performance, or any other factor – the project just requires domestic PV wire. 

Over the years, solar projects have become more specific, especially as the federal government attempts to bolster domestic manufacturing. As a result, more solar projects are pushing to meet domestic content requirements like BABA. The products called for are then “spec’d in,” requiring developers to source those materials for the project. 

BABA, or the “Build America, Buy America” program, ties funding and tax credits to solar projects. For example, ITCs and PTCs contain language about using American-made materials in the site’s development. We wrote a blog about these rules, which you can find here. 

State and local domestic product incentives could also be in play, depending on the project’s location. 

The Case for Imported Wire 

So, with so much focus on domestic production, is there a place for imported PV wire? 

Imported wire can do the job, but it’s important to ALWAYS work with a trusted, vetted international partner. Different countries have different standards, so it’s on the developer to verify who they buy from is reputable. 

Price – Larger projects call for more wire – often to the tune of hundreds of thousands of feet. Imported wire is generally more cost-effective, reducing overall project costs. 

Access to In-Stock or Unique Products – On occasion, solar projects may call for uncommon wire, which could lead to longer lead times. Overseas vendors may have specialized products in stock, keeping projects moving on time. 

Once again, DO YOUR RESEARCH before purchasing thousands of feet of wire from an international vendor. A trusted partner can meet safety standards and be transparent about their processes, ensuring high quality. 

Small Line Item, Huge Impact 

Wire is a crucial component of any utility- or community-scale solar installation. Without it, electricity doesn’t move from the panels to the electrical grid. 

Buying American isn’t solely about supporting the Red, White, and Blue. Builders get faster shipping, fewer added shipping costs, top-quality products, and peace of mind. 

Some overseas products may have similar quality, but EPCs must do their due diligence. This means building trust and verifying those manufacturers produce high-quality products. 

At the end of the day, not all wire is the same. No matter where the wire comes from, only work with trustworthy manufacturers that meet the highest standards. The result will be better installations, safer projects, and long-lasting performance for decades. 

What is a Virtual Power Plant?

One of the worst feelings is the dread one feels when the power goes out. 

Homes and businesses typically rely on electricity from local power generation plants. For the most part, consumers can reliably power our daily routines and keep life moving smoothly. But it also comes with a massive disadvantage. 

When the power goes out, electricity doesn’t go to end users, leaving them in the dark. While crews work feverishly to restore power, home and business owners worry about spoiled food, lost revenue, and boredom. 

However, emerging technology supported by electrification is changing how power disruptions impact our lives. These virtual power plants (VPPs) can keep the lights on using power created by our neighbors. 

Though they sound complicated, VPPs are the next step toward developing a more dynamic electrical grid. 

What is a VPP? 

By definition, a virtual power plant is a network of decentralized production and storage units combining to send power to the grid. 

But what does that mean in human terms? 

“Decentralized production and storage units” are basically all the pieces making up the VPP. These distributed energy sources (DERs) include everything from solar panels and batteries to electric vehicles (EVs) and smart products. If it can create, store, or control electricity, it can be part of a VPP. They also don’t need to originate from a singular location – VPPs can cover small or large areas. 

The best part is anyone can join a virtual power plant. Potential VPPs can include residential, commercial, industrial, or community-scale systems, though rooftop solar is the most common DER. 

VPP technology has existed for several decades but has taken off dramatically in the last ten years. The Department of Energy estimates that 30-60 GW of VPP grid capacity exists today. 

How Does a VPP Work? 

Let’s pretend a neighborhood has several rooftop solar systems, EVs, and smart homes. If these systems are part of a virtual power plant, utilities can draw from them during an emergency to power other homes and businesses. 

And just like that, a storm rolls through, knocking out a critical power line supplying electricity to several neighborhoods. When power outages or peak demand occurs, the utility activates the VPP. The utility can then remotely “talk” to connected DERs to turn thermostats down, reduce electricity use, and discharge EVs. 

Power flows from connected devices to the grid, sending electricity to other impacted neighborhoods. At the same time, energy loads drop, ensuring enough power is available. 

NOTE: This ONLY happens if the customer has opted in – VPPs require remote control from outside operators, like utilities. 

It might not seem like much, but localizing the grid to specific areas makes it more stable. Utilities can worry less about burning more fuel to send electricity across transmission and distribution lines and focus more on repairs. For end users, VPPs keep the lights on during peak times and emergencies using power supplied by others. 

VPPs Are NOT Smart Grids 

If you know the phrase, “A square is a rectangle, but a rectangle is not a square,” the VPP/smart grid relationship makes sense. 

Think of it like individual states in the nation. For example, Vermont is only one part of the larger United States. 

A VPP is a type of smart grid, but it’s only one piece of the larger smart grid infrastructure. Unlike a virtual power plant, smart grids cover the entire electrical grid, utilizing new technology to improve reliability and resiliency. 

Smart grids create large-scale two-way networks between operators or utilities and end users. Utilities can optimize electricity output and flow through the network, better incorporate renewable energy, and perform real-time monitoring. 

The result is a more dynamic electrical grid that reduces power loss, improves reliability, and saves money. 

Why They’re Gaining Steam 

Storms are getting worse, making power outages more severe. 

In 2023 alone, the U.S. experienced 28 “Billion Dollar” weather events, totaling an eye-popping $95 billion in damages. Weather is also the cause of more than 75% of power outages in the U.S., making it the grid’s number one threat. 

At the same time, the push for groundbreaking technology has never been stronger. More things rely on electricity than ever, requiring vast amounts of electricity. But with smarter electronics and power generation systems, we also have more opportunities to share power. 

Reducing Risk, One Neighborhood at a Time 

Our nation’s electrical grid is showing its age, as many pieces of infrastructure are well over 25 years old. 

Because of its age, the grid is more susceptible to damage caused by storms, physical threats, and cyberattacks. Unfortunately, when systems go down, people and communities are at risk. 

Communities once relied on central power plants to deliver electricity to neighborhoods, businesses, and other locations. But during outages, those people sat in the dark until power was restored. 

Under a VPP, during an outage or demand spike, the utility can remotely call on DERs to discharge power to the grid. Those opting into the program become power plants, drawing on stored energy to electrify those around them. 

Long-Term Savings 

Beyond grid security, VPPs reduce the number and size of electrical transmission and distribution peaks. 

What does that mean for the average person? When peaks occur, it stresses the grid since it has to support more electricity. The strain could lead to problems ranging from blown transformers and substation faults to overheated wires. Fewer peaks mean less threat of overloading the system. 

Peaks occur when there’s more demand than usual. To support the higher demand, peaking power plants generate electricity to meet the need. The problem is these power plants are expensive to run. Someone has to pay those costs, and it’s most likely the end user. 

VPPs take the pressure off power plants to meet peak demand by discharging electricity from DERs. As a result, the utility spends less money on fuel sources and limits energy loss along power lines. Meanwhile, customers receive steady power while VPP participants earn cash or credits for their electricity. 

Best yet, expanding VPP services goes beyond short-term savings. According to the Department of Energy, if the U.S. deploys 80-160 GW of VPPs by 2030, it could save $10 billion in grid costs

Taking Advantage of Incentives 

Like other renewable energy initiatives, there are programs and incentives available for VPPs. 

Depending on location, rebates and programs make commercial, industrial, and community-scale solar possible. For example, Maryland’s Distributed Renewable Integration and Vehicle Electrification (DRIVE) Act requires investor-owned utilities to develop programs rewarding DERs and establish incentives.  

Utilities and community solar energy operators also have programs to finance and promote VPPs. The Department of Energy has funded various clean energy installations through Title 17, which provides loans for innovative projects. 

In other cases, state and local incentives for solar and other renewable projects could be available. And don’t forget to research what incentives stack, as organizations and programs cover different initiatives. 

VPPs for Consumers 

Consumers participating in virtual power plants and installing DERs add clean energy to the grid. As more clean energy systems come online, we rely less on large-scale power plants and fossil fuels. Over time, this may reduce electricity costs. 

Additionally, VPPs ensure homes and businesses have power during an outage, reducing other losses. From allowing small businesses to stay open to preventing food spoilage, small power providers keep everything running smoothly. 

As for the bottom line, consumers sending power to the larger grid earn money or credits on their energy bills. Those credits can offset upfront costs related to installing a solar system or battery or buying an EV. 

Downsides and Cautions 

For everything virtual power plants do well, there are some drawbacks to how the system operates. 

Despite owning the power they produce, consumers don’t always have control. When signing up for a VPP, consumers give operators the right to draw energy from DERs when necessary. If that happens, EVs, batteries, solar panels, and smart products connected to the network begin discharging and conserving power. 

Operators have also launched programs to pre-enroll consumers, though they can opt out later. Though it’s easy for utilities to enlist homes, businesses, and others into the program, consumers should be well informed. Participants must understand the program’s details, what to expect, and how utilities will compensate them. 

Not Enough Participants 

Experts believe virtual power plants could help address future energy demands, especially as older plants retire. 

Coal use has declined for years, with 4 GW of coal-fire capacity retiring in 2024. Before last year, retirements averaged about 9.8 GW each year for the previous decade. Worse yet, as retirement and deployment schedules fluctuate, we’re looking at a 200 GW gap in peak demand needs

VPPs could fill the potential gap, but the country must act fast. We need about 80-160 GW of capacity by 2030 to meet rising U.S. demand. The current total is only about 30 GW, far from the low-end goal. 

Not a Replacement for Grid Upgrades 

Electricity demand is rising rapidly, thanks to more electronics, a growing number of data centers, and a manufacturing renaissance. 

The result is a fevered effort to find new ways to generate power for the grid. Unfortunately, the current grid isn’t entirely ready for a wave of innovation. Instead, the design supports older power production methods powered by fossil fuels. 

The grid currently can’t reach its full potential because it desperately needs upgrades. Solar projects across the U.S. face massive delays because of red tape and interconnection problems. Other infrastructure has reached its usable lifespan, so we should replace and upgrade it. 

Everyone Plays a Part in Clean Energy 

Utilities, solar companies, businesses, government, and consumers all stand to benefit from VPPs. 

With planning and strong execution, we can cut costs throughout the supply chain. On top of the financial costs, VPPs help improve grid resiliency, leading to fewer power outages. Adding diverse electricity options also gives utilities more access to clean energy, reducing reliance on fossil fuels. 

The future is leaning toward cleaner power, but we still have lots to do. It means finding answers for rising demand, aging infrastructure, interconnections, and industry support. But as we check each box, powering our future becomes more possible.

Solar Project Anatomy: Exploring Remote Monitoring Systems 

When you ask the average person about solar, their answer generally extends to what they see – endless rows of solar panels, racking systems, and thick bunches of PV wire.  

But beyond the main parts and pieces, vital accessory systems keep utility-scale solar operations running smoothly. From tracking weather and fighting fires to system monitoring and electrical grounding, these systems are the eyes and ears of every site.  

Though every solar project is unique, most large-scale sites share several monitoring systems. When they combine, the data they collect gives operators unparalleled insights into every aspect of their site.  

Remote Monitoring Systems  

Like the home security system protecting your house, cloud-based remote monitoring systems (RMSs) protect solar sites from potential damage.  

These systems monitor performance metrics and track voltage, output, and system status. Sensors collect data in real time and then send it via an internet connection to the cloud. Operators can access the data anytime to get vital information, see status changes, and make system changes remotely.  

Remote monitoring systems make operators more proactive, keeping power flowing with less boots-on-the-ground troubleshooting.  

Eyes in the Sky  

When used correctly, RMS identifies system failures before they cause damage or lost production.  

Sensors collect data 24/7, using the information to create baselines and trends. If something occurs at the solar site – for example, damaged panels or inverters, the system pings the operator. From there, the utility or owner can take action.  

But not every issue is a full-blown disaster. Remote monitoring’s ability to spot trends makes it easier to find improvement opportunities. If performance drops at certain times, for example, operators can send a crew out to look for shaded panels. A consistent performance decrease over time could signal soiled panels, meaning a cleaning might be due.  

Having access to detailed reports is a game-changer for operators. Remote monitoring works alongside other systems, including weather stations, to produce comprehensive reports using historical data. With it, operators can constantly make tweaks to improve performance. 

Remote Monitoring Limitations  

Unfortunately, remote monitoring systems aren’t perfect.  

Rural solar installations may not have reliable internet access, making it harder to send data to the cloud. With that said, operators have several options, including 4G/5G wireless connections, satellite internet, or point-to-point wireless networks.  

Additionally, like any internet-connected device, there’s always the risk of a cyberattack. If that happens, bad actors could access sensitive data and systems. For operators, cyberattacks may result in power disruptions and shutdowns or data loss and theft.  

Finally, monitoring systems can be expensive. Operators may need outside experts to set the system up correctly and ensure it’s collecting accurate data. With that said, hiring the right team is critical to getting everything you need out of the RMS.  

Solar Weather Monitor - Sun-Pull Wire

Weather (Meteorological) Stations  

Like remote monitoring systems, weather stations collect vast amounts of data. The difference is that the data they collect is environmental, not performance.  

Weather monitoring stations collect everything from solar radiation and temperature measurements to rain and snowfall totals, wind speed, and humidity data. Once combined, the data paints a picture of the overall conditions to help operators understand performance data.  

Together, RMS and weather data can answer questions tied to overall performance. For example, the two systems can explain what happens during weather events, giving operators the tools to develop maintenance, cleaning, or repair plans.  

Neither Snow, Nor Rain, Nor Heat…  

Although weather is unpredictable, it can be used to spot seasonal trends over time. 

As the WMS collects data, operators see more clearly what to expect during different parts of the year. It might not seem like much, but in areas with four distinct seasons, weather trend data is invaluable. With it, crews can plan for cleanings, maintenance, and other work when openings allow. 

For the average operator, accurate data does more than make scheduling easier. Over time, forecasting accuracy increases, backed by years of tracking data. Based on expected weather trends, operators can change panels’ tilt and facing to meet conditions and increase production.   

Trend data also helps operators determine the amount of risk weather events may cause to the system. Historical data can determine what past events did to the system, giving workers valuable clues about what to expect. 

More information leads to better risk management and fewer setbacks. 

Weather Monitoring Limitations  

Although WMS data is comprehensive, it’s also highly technical.  

Operators need specialists to set up and calibrate each monitoring station. Unfortunately, large solar farms can cover many acres, and conditions change from one spot to another. Depending on the size of the site, operators could need multiple stations to get full coverage and accurate data.   

Despite the cost, meteorological stations drastically improve the quality and quantity of data collected, especially when combined with remote monitoring systems.  

Fire Suppression Systems  

A fire is one of the worst things that can occur at a solar site.  

PV systems produce a lot of electricity, and fires can start if there is an arc, fault, or wire damage. Unfortunately, many utility-scale systems sit in remote areas, making it hard for crews and firefighters to respond quickly.  

When fires occur, expensive repairs are needed, potentially costing millions of dollars to get back up and running. 

Solar Farm Fire Risk Factors  

You’d be surprised how little it takes for a fire to erupt at a solar power site.  

Common causes include:  

Electrical issues: Small nicks in the wiring can create arcs and faults, leading to fires. Other components also pose fire threats, including overheating panels, inverter issues, and even short-circuiting battery storage.  

Lightning: Solar sites occupy a lot of land, making them targets for lightning strikes. When lightning hits the installation directly, it can damage panels, wiring, inverters, and other components. Indirect strikes are just as bad, leading to power surges and ground currents that could increase fire risk.  

Objects and plants: This is a two-fold problem. Plants and objects touching panels or electrical components risk getting shocked, electrocuted, or starting a fire.  

Meanwhile, plants or trees that cover parts of the solar panel with shade create hot spots. Over time, hot spots can lead to overheating and reduced power generation.  

Accidental damage: We all make mistakes, but sometimes mistakes lead to massive problems down the line. Nicks in the PV wire, damage to the panels, or even a faulty connector can start a fire.  

Fighting Fires from Afar  

Site operators have several options for remote fire suppression, ranging from water and misting to foams and carbon dioxide.  

Fire suppression systems monitor the site for issues and act to extinguish fires before they can spread. If a fire breaks out, these systems are the first line of defense, protecting valuable components until responders arrive.  

Of course, as good as a fire suppression system is, it doesn’t replace vigilance and planning. Operators need a fire prevention and protection plan to keep crews, local responders, utilities, and others informed.  

Grounding Systems  

When power surges or faults occur at a solar site, they threaten the entire system.  

Utilities rely on grounding systems to create a low-impendence route for electricity and prevent temporary overvoltage (TOV). When TOVs happen, the voltage rises above its usual levels for a sustained period. Unlike lightning strikes, which may spike voltages for a short time, TOVs could highlight fault conditions or other problems.  

Grounding systems are critical to any solar installation. Without them, solar sites could see component failures, fires, and total system failures. Grounding reduces the potential difference between the earth and energized surfaces is almost zero. 

Keeping Up with Codes  

From a safety standpoint, installing a grounding system makes sense. But if that isn’t enough evidence, effective grounding is required by many code departments.  

For prospective solar operators, that means working closely with local code departments to follow NEC standards. They might seem like additional hoops to jump through, but they ensure every project is as safe as possible.  

In other cases, many insurers require proper grounding for all systems before issuing an insurance policy.  

Systems for a Better Solar Energy Industry  

Solar sites across the United States rely on an intricate web of monitors to protect and optimize their sites.  

Let’s face it – clean energy projects are huge investments. If there’s a way for operators to protect them with cost-effective solutions, they will.   

Combining performance data, weather information and trends, and fire detection monitoring helps operators maximize their investments. As more features tie into the ever-growing Internet of Things (IoT), operators will continue making better decisions faster. Additionally, their teams are more effective because they aren’t relying on hunches and incomplete data. 

Solar energy is taking off in the United States – it’s only fair to assume site technology will grow alongside it. Most importantly, better technology leads to improved power output, more reliable systems, and happier end users.

PV Wire Management Systems Explained

When you’ve got thousands of feet of PV wire strung up for seemingly endless acres, keeping them organized and protected is crucial. 

The best wire management plan relies on understanding the terrain, project size, complexity, layout, and other factors. Depending on the project, solar EPCs have several wire management options, from open-air clips and ties to comprehensive conduits and trays. Regardless of the style, these systems organize and protect cables for the life of the solar system. 

The result? Cleaner, manageable layouts, more efficient repairs and replacements, and safer sites over the long term. 

S Clips 

S clips are a low-cost and effective solution to keep wires and cables in place. 

The clips are usually made from stainless steel, which is strong and resists corrosion, making them great for outdoor use. Other options include aluminum alloys or even UV-resistant plastics. 

Crews like S clips because they’re easy to install without tools, attaching to the back of the solar panel or onto the racking. They’re also reusable, allowing workers to remove and reattach clips during maintenance, repairs, or replacements. 

Multi-Faceted Fasteners 

The allure of S clips lies in their simplicity. 

They’re small enough to hide under panels and along racking and perform well across many environments and temperatures. Certain constructions also work in harsh areas, including in or near salt water. 

Unlike more expensive wire management systems, S clips don’t require other tools to install. This makes them easy for even inexperienced workers to use. Removal is almost as easy, requiring only a screwdriver to pop the clip off the panel or racking. 

Though the clips only hold a few wires in place, they do an excellent job of preventing sagging along the cable line. However, crews must be careful to avoid accidental nicks or scrapes caused by the clips. Normally, they’re coined or smoothed to prevent damage but could cause problems over time or during severe weather. 

Hanger Systems 

Like S clips, wire hanger systems hold wires in place, but do it on a larger scale. 

Made from galvanized steel and coated with PVC, hangers are extremely durable and weather-resistant. The PVC protects the underlying steel core against exposure and ensures wires stay damage-free. 

Unlike S clips, which can hold two or three wires, hangers can hold many safely – including large-gauge cables. They’re cost-effective, reusable, easy to install without tools, and can bend to fit nearly any configuration. Hangers also perform well across many environments, including challenging terrain. 

To install hangers, workers first need to install a messenger wire. Though it doesn’t carry current, the steel cable shoulders the weight of all the cables to reduce sagging. It also provides a steady, safe spot to mount hangers that isn’t part of the racking or the panel itself. Once the messenger wire is in place, workers bend the hanger into the shape they need and hang it. 

Cable Ties and Locks 

Most people are familiar with plastic or nylon zip ties used for DIY projects, but solar cable ties are much stronger. 

Made from high-quality, durable, and UV-resistant plastic, these one-time-use ties secure cables directly to the solar racking. They’re chemical, water, and sunlight resistant, and more rugged ties could work in colder temperatures. 

Keep in mind that not all cable ties are equal. Low-quality ties, like the nylon ones hiding in your junk drawer, will eventually become brittle, causing them to break. This is especially true in areas where snow and cold weather are a threat and regions with high UV exposure. 

Unlike S clips and hangers, cable ties are a one-and-done product. Crews must replace them every time they complete work. 

Cable Locks 

Cable locks use a tool-free locking mechanism to hold ties in place, with additional room for slack. 

Depending on the company and the style, cable locks can look or act differently, but the overall logic is the same. Most are easy to install and reusable, utilizing locks and tie lines to hold cables in place and prevent accidental removal. 

Despite the similar design to cable ties, cable locks will last for the life of the panels, generally 20 to 25 years. 

Cable and Wire Trays 

Sometimes, open-air solutions aren’t the best way to protect solar wires.  

In those situations, especially in harsh environments and areas where digging isn’t possible, wire and cable trays make all the difference. 

Unlike conduit, which requires digging and burying wires, cable trays are aboveground installations. Workers connect the tray pieces, lay the wire in, and move along. The cables are safe from physical damage, including scrapes, abrasions, crushing, and even pests like rodents. Beyond physical damage, trays protect cables from wind, snow, sun, and other weather-related issues. 

Solar developers can choose either metal or plastic trays, depending on how much flexibility and strength they need. But no matter what material installers select, the cables inside are safe and organized. Best yet, if wires need replacement, workers can quickly access the tray. 

Conduit 

For the ultimate utility-scale solar cable protection, conduit is king. 

To install conduit, workers dig trenches in the ground and lay metal or PVC tubing. Next, workers fish the PV wire through the conduit from the solar panel to the combiner box. The resulting installation offers stellar protection from crushing, abrasion, UV, temperature changes, chemicals, and pests for the wire’s usable lifespan. 

Conduit keeps wire safe and sound but is more expensive than other wire management methods and is slower than open-air methods. Conduit also doesn’t work for certain solar sites, including those with rough terrain or brownfield sites. 

Wire Management Boxes 

Protecting wire is vital, but connection points are equally important. 

Combiner boxes are a staple at commercial, industrial, and utility-scale solar installations. Depending on the layout, they can hold dozens of wires in place, alongside fuse assemblies, buses, and even system monitoring equipment. 

When installing wire management boxes, placement is important. Every installation is different, and boxes must be ready to address unique challenges. From paint color and box size to breather vent placement and mounting position, every decision impacts performance and lifespan. 

Many Options, One Mission 

No matter what solutions installers choose, the goal is always to prevent wire damage. 

Wire management systems do a lot to prevent damage, but they aren’t perfect. Accidents happen, nicks occur, and wires pinch, leading to potentially dangerous situations like arcs, faults, and other issues. 

Damaged wires don’t always immediately cause problems – nicks in a conductor’s insulation take time to develop. Leaks, corrosion, pinches, abrasions… they can all eventually create delays, lost profits, and put people at risk. 

Crews should trust monitoring systems to track trends and spot abnormalities but should perform scheduled inspections, too. Beyond looking for obvious damage, workers should be on the lookout for other issues, including: 

  • Sharp edges on clips, ties, locks, and other materials 
  • Signs of aging on wire management systems, including peeling coatings, insulation pulling away, chipping, or nicks 
  • Damage to PV wire conductors, such as pinching, abrasions, nicks, and other wear 

Most importantly, work with local code departments and follow NEC guidelines. Keeping an eye on the regulations will ensure that teams safely manage solar power wires and cables.

Dirty Jobs: Do Dust and Grime Lower Solar Panel Performance?

How often do you look around your house and realize everything is a dusty mess. 

You clean, wipe, and feather dust everything, but keeping everything tidy is a never-ending battle. 

Well, take solace that you’re not alone. Solar farms around the world deal with the same problem with varying results. 

Efficiency Killers 

The average solar panel has an efficiency rate above 20%, though some prototypes can perform better. 

But no matter how efficient your panels are, dirt, grime, and other schmutz are a constant threat. It might not seem like it at first glance, but solar panels are constantly picking up debris called soiling. If not taken care of, those particles can cause headaches for utilities, communities, and companies. 

Luckily, soiling doesn’t have to be an energy-generation killer. With some planning, proactive work, and emerging panel cleaning technology, it’s possible to easily maintain efficiency. 

What Causes Dirty Solar Panels? 

As with anything left outside, dust, dirt, pollen, and debris collect on panels over time. 

When dirt, dust, and other particles fall onto solar panels, they obscure the cells, leading to lower efficiency. Unfortunately, this is a common problem for many solar installations, especially those in sunny, desert areas. 

Dirty panels may not seem concerning, but even a little dust and debris can hurt production. According to the National Renewable Energy Laboratory, soiling accounts for as much as 7% of annual energy lost in the United States. Unfortunately, in even dustier areas like the Middle East, losses can be as much as half. 

Although lost energy is an issue, let’s face it: money can be an even larger motivator. MIT experts suggest even a 1% reduction in power from a 150 MW solar project could cause $200,000 in lost revenue annually. As panels take on more soiling, losses can quickly mount, resulting in lower ROIs. 

Of course, soiling does more than impair solar power generation – it can be a headache. In many cases, a good rainstorm can wash away most dust, dirt, and other messes, but that’s if there’s regular rain. In areas where rain is rare, moisture can combine with dirt and grime to create a much harder-to-remove filth. 

Sometimes, it may make sense for workers to use a water jet to clean solar panels. This process uses pure water to wash away soiling – any impurities can leave water spots and deposits. Another option for solar sites is dry brushing. Brushing is generally less effective than water and may potentially scratch or damage panels. 

Not all Soiling is Dirt 

It might not cause the same issues as a thick layer of dust on a solar panel, but snow poses its own production risks. 

When snow lands on solar panels, it’s harder for sunlight to reach cells, limiting power generation. Beyond reducing power output, heavy snow can damage panels, racking systems, and sensitive tracking components. Workers must then replace expensive equipment, leading to further lost revenue. 

Unlike dirt and grime, snow is easier to deal with on a solar site. Workers can quickly remove snow with a soft bristle or foam brush, leaf blower, de-icing product, or heating system. Panels could also naturally clear themselves as snow and ice slide off the tilted panels. 

Melting snow and ice offers another benefit for solar sites, as the water may remove soiling. 

Powering Down: How Soiling Impacts Production 

When dust, bird droppings, dirt, snow, and other debris block solar panels, it can start a chain reaction impacting short- and long-term activity. 

But what types of problems can we expect, and when can we expect them? The answer isn’t always clear, but it depends on location, water resources, and cost. 

Reduced Power Generation 

We’ve covered this a little bit already, but when dust builds up on solar cells, it prevents them from collecting solar energy. 

Needless to say, a solar panel not collecting solar energy is a problem. Over time, more dust and grime build up on the panels, causing drastic production decreases. Even worse, soiling can cement onto the panels as dirt combines with resting liquids like dew or condensation. 

Soiling does more than impact initial energy output. Less generated power means less revenue, which hurts the bottom line and the project’s lifetime return on investment (ROI). 

Higher Maintenance Costs 

Dirty panels are more than a productivity killer – they can run up maintenance costs, too. 

If rain and melting snow can’t clean the panels naturally, crews might have to drive to the site and clean them. Unfortunately, cleaning solar panels isn’t as easy as hooking up a garden hose and getting to work.

NOTE: Never allow crews to clean panels using a pressure washer. High-pressure water can damage sensitive solar cells and panel seals, even from several feet away.

Utility-scale solar systems can cover hundreds of acres, requiring the services of a professional cleaning company. Depending on how they choose to clean, the company might need to bring in pure water – regular water can leave deposits on the panels. Cleaning crews also need specific cleaning tools to prevent scratches and other damage that could impact energy production. 

Another option could be to invest in a self-cleaning system. Although these systems increase upfront costs, they maximize efficiency over the installation’s lifespan. 

Shorter Panel Lifespans 

How often do we hear about the importance of changing our car’s oil to avoid catastrophic engine issues? 

The same “ounce of prevention” advice our uncles gave us years ago holds the same value when applied to solar systems. When soiling goes untreated, it puts the solar energy system at risk. 

Without regular cleaning, dirt and debris raises the operating temperature of the solar panel system, resulting in damage. If damage occurs, crews may need to repair or replace panels to regain lost efficiency. 

Worse yet, muck and grime could damage other parts and pieces in the solar system, including tracking components. These sensitive components are complex – anything preventing their movement will immediately impact performance and eventually cause them to break. 

Preventing Damage 

Despite the potential problems associated with soiling, keeping up with cleaning is sometimes surprisingly simple. 

Whether allowing nature to lend a hand or investing in top-notch tech, keeping panels clean isn’t always a battle. 

Let the Rain Help 

Sometimes, the easiest way to handle a dirty solar panel is to let nature take its course. 

Rain, wind, and snow do a good job of keeping solar panels clean, especially between scheduled cleanings. Depending on the panel’s angle and the environment, rain and snow might be enough to wash away dust, dirt, and other debris. However, flat panels may have difficulty self-cleaning because they lack tilt. 

In rainy or snowy regions, the weather can be an excellent way to maintain panel efficiency with little effort. During dry spells, dust and grime build up on the panels, but one or two rainstorms can quickly improve efficiency to near its maximum. 

Keep an Eye on Systems 

Problems are much easier to address early on than when left to grow. 

Monitoring systems attached to solar systems can detect power generation decreases using sensors, output metrics, or other tracking. Larger sites mean more sensors, especially on farms where conditions vary from one area to the next. 

Constant monitoring allows crews to investigate problems quickly and determine if they need to take action. 

Maintain a Regular Schedule 

Proper maintenance helps get the most out of every component throughout its lifespan. 

Just like changing a car’s oil regularly, set up a cleaning schedule for the solar site and follow it. Crews can clean panels in several ways but most commonly use water or soft brushes. 

Using pure water is the safest method for cleaning solar panels, but costly if it needs to be delivered by truck. Soft brushes or blower systems are a cheaper option but tend to be less effective. They also may risk scratching or damaging the thin film solar panels if done improperly. 

Beyond simple cleaning methods available today are developing technologies capable of cleaning solar panel surfaces without touching them. One solution uses electrostatic repulsion to magnetically remove dust from the panel’s surface, safely cleaning it without water. 

Join the Robot Revolution 

As our lives become more autonomous, robots and algorithms have taken on more of our daily work. 

Autonomous cleaning systems mounted onto the solar system can wipe dust from panels without humans. The process is successful in the Middle East, where sand and dust constantly threaten energy production. 

Solar companies have no shortage of automated cleaning systems, with dozens on the market today. Many operate on solar power, cleaning rows of panels without water. 

Keeping Up with a Constant Problem 

We can’t realistically protect solar panels from every bit of dust and debris. Luckily, we have plenty of tools to help us mitigate damage. 

It starts with finding optimal locations away from construction, agriculture, and trees. Later, it means investing in regular cleaning, using either water, brushing, or an automated system. Monitoring systems also play a role in reducing the threat of poor performance and lost productivity. 

The solar industry is booming, not only in the U.S. but around the world. As technology improves, other innovative solutions will soon come to market, keeping our panels clean and our future bright.

Will High Interest Rates Stifle Solar EPC Development?

Solar development is thriving across the United States, but why? 

While we can suggest growth is directly tied to climate change goals, nuance is missing. Climate change drives solar adoption, but maturing technology and lower costs influence it, too. 

Lower Costs, More Adoption 

New technology is always expensive when it first hits the market.  

Like electric vehicles, computers, and MP3 players, solar panels cost less than what they did when they were first sold. According to the National Renewable Energy Laboratory (NREL), the cost of residential, rooftop commercial, and utility-scale solar fell 64%, 69%, and 82%, respectively, from 2010 to 2020. 

In 2022, a tariff moratorium benefited the solar industry by allowing companies to import low-cost solar panels from Asia. Though the tariff is ending, it has given domestic manufacturers time to increase production. Domestic panels may be more expensive but cost less to ship and have a shorter supply chain. 

Soft costs are also improving, though more slowly than hard costs. Unfortunately, there isn’t one universal policy, leaving communities and states to create rules. This results in processes that slow down solar projects and potentially increase costs. 

Despite political and technical hiccups, solar installations are up. Solar Energy Industries Association (SEIA) data suggests solar accounted for 75% of new electricity capacity added in Q1 2024. The organization also mentioned utility solar projects were doing well, setting quarterly records in Q1 2024. 

But amongst all the excitement, a storm cloud could derail momentum. 

Tackling Climate Change with Solar 

Generating electricity isn’t always clean or cost-effective, but it’s part of our daily lives. 

Unlike fossil fuels, solar energy and other renewables are cheaper, cleaner, and infinitely available. As a result, solar farms are playing a critical role in upgrading our clean energy portfolio. 

According to the U.S. Energy Information Administration (EIA), the country added 15.8 GW of solar power from January to September 2023 – up 30% year-over-year. While it’s great news for the industry, the country, and the environment, the solar boom is facing headwinds. 

Wood Mackenzie, a data and analytics company, believes inflation could temper solar energy’s sunny outlook. When inflation rises beyond the normal range, it sends ripples throughout the economy. With inflation spiking in recent years, Wood Mackenzie fears the renewable market could be impacted more than other industries. 

The group says photovoltaic (PV) installations are expensive to establish, resulting in high investments and low returns. However, solar has long been an attractive choice because of its levelized cost of electricity (LCOE), a metric comparing different types of energy to one another. 

Solar has a much lower LCOE than fossil fuels like natural gas, but its advantage shrinks as inflation rises. 

Inflation Looms Large 

Inflation-wise, life was pretty good for many industries emerging from the Great Recession. 

Rates were low and steady, allowing businesses and the economy to flourish. But after more than a decade of stability, COVID-19 ruined the party. 

As the world reopened and life returned to normal, inflation boomed. By the middle of 2021, the 12-month inflation rate had risen to more than 5%. A year later, we saw inflation rates around 9%. The rate has cooled but still sits far above where it was only a few short years ago. 

Some inflation is good because it encourages businesses to invest, but excessive inflation does the opposite. Over time, higher inflation means less profit. High inflation makes operating costlier, ultimately hurting industry growth, especially in emerging markets. It also makes it harder to plan for future projects because money is “more expensive.” 

How Higher Inflation Affects Solar EPCs 

The simple response to the impact of inflation on the industry is to say, “Everything is more expensive.”  

However, several areas of solar development may feel the brunt more than others. 

Projects Are More Expensive 

When interest rates increase, so do financing costs

In straightforward terms, financing costs are tied to borrowing money for funding projects. These costs include loans, interest, and other fees. As these costs increase, it’s harder to afford more or larger projects. 

For solar sites, upfront costs make up the majority of expenses. Engineering, Procurement, and Construction (EPC) companies must purchase racking, solar panels, wiring, and connectors while juggling permits, taxes, and land costs. Once the project is complete, costs fall dramatically as maintenance and operation costs are much lower. 

Of course, the upfront costs bring new solar projects online. When rates are high, companies are less willing to jump into new projects. Over time, the number of delays increases alongside cancellations. 

A Ripple Effect 

Delayed or canceled projects have impacts far beyond one job. 

Higher interest rates may cause delays and cancellations, potentially impacting solar development in certain areas. With fewer projects, there aren’t as many jobs for installers, electricians, and other professionals. 

On the other hand, solar is still a growing industry with a shortage of qualified professionals. More delays may lead to fewer opportunities in the short term and more trouble finding labor if demand picks up. 

Additionally, as we saw during COVID-19, supply and demand metrics can throw the entire supply chain off. When interest rates are high and projects slow down, companies are less likely to hang onto inventory because it’s more expensive. When materials sit on shelves, it creates sunk costs because inventory isn’t moving. 

Supply chains could suffer, especially when the solar panel moratorium ends. For two years, solar installers have had access to low-cost panels from overseas, specifically East Asia. The moratorium was supposed to help increase domestic manufacturing, but the domestic supply still poses concerns.  

In this case, companies may have to pay more for materials while dealing with supply chain hiccups. 

Beating Back Inflation 

Inflation may be high, but there’s hope for companies, installers, and the industry. 

The Federal Reserve will likely reduce interest rates this year, but it’s not guaranteed. With that said, solar installers have options to reduce costs and keep projects moving. 

Take Advantage of the Inflation Reduction Act (IRA) 

The IRA has plenty of initiatives and incentives to encourage solar development. 

Some of the most common are ITC and PTC credits that kick in upfront or over time. For example, an ITC credit does not change based on variables, but a PTC credit could change based on project costs, other available credits, and even the environment the array is in. 

Expanding on the IRA’s benefits, the law also includes other incentives and programs for underserved regions. Their goal is to encourage the development of low-cost, reliable energy projects in rural, low-income, and tribal areas. 

Simplify Permitting 

One problem associated with solar development is navigating a maze of permitting red tape. 

Though the process has improved, states and communities may have vastly different procedures. Solar EPCs should look for communities, regions, and states welcoming solar. These areas are more likely to have simpler permitting processes, which can get projects off the ground faster. 

Several organizations and agencies have information available to streamline the permitting process, including: 

Improve Productivity 

Besides materials, labor is a massive cost center – especially on larger projects. 

Keeping projects on track often means using parts that reduce in-field work as much as possible. Pre-made components limit mistakes in the field because all parts have been tested before leaving the factory. They also allow crews to get on and off the site faster, letting them move on to the next project. 

For example, bundled wire and pre-made PV connectors cost slightly more than single reels and field-made connectors. The higher cost is more than returned in savings, as workers can install PV wire up to 80% faster. Over several projects, the labor and time savings more than cover the extra cost with fewer workers on site. 

Light at the End of the Tunnel 

Inflation remains high but is slowly falling. 

As with anything in life, what goes up must come down. Construction input prices have slipped recently, leading some experts to take it as a sign of easing inflation. The hope is with softening prices, the Federal Reserve may cut interest rates in the coming months. 

Though construction is tangent to solar farm installation, it offers the economy hope. Solar EPCs are in a unique situation right now. Although costs are increasing in the short term, so is the demand for renewable energy. 

We thought the market might slow down, but it has stayed strong. This has encouraged installers and manufacturers to continue pushing for long-term projects and development. Meanwhile, the industry is navigating a labor shortage, opening the door for people to access high-paying solar jobs. 

The industry is stronger than ever, prompting companies, utilities, and communities to invest in solar. These installations provide clean power to the electrical grid and help reduce greenhouse gas emissions caused by fossil fuels. 

EPCs still have options to save money despite the economic environment. It only requires forward-thinking site placement, permitting strategies, material sourcing, and labor decisions.

Bright Idea: Converting Brownfields into Solar Farms

Go for a drive anywhere in the United States, and you probably won’t be far from a current or former brownfield site. 

According to the Environmental Protection Agency (EPA), more than 450,000 brownfields litter the U.S. But what is a brownfield, and why are governmental, public, and private organizations so interested in them? 

As it turns out, brownfields may play a vital role in our ongoing solar energy development. The EPA defines a brownfield site as “a property where expansion, redevelopment or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant or contaminant.” 

Typically, brownfields are former locations used for industrial or commercial activities, including manufacturing, storage, or processing. Using this explanation, examples include factories, gas stations, railyards, and landfills. 

Unfortunately, their ties to chemicals, heavy metals, and other potential pollutants make them unattractive development sites. Unlike greenfield locations, which are undeveloped pieces of land ripe for expansion, brownfields require rehabilitation before use. 

Not Every Brownfield is the Same 

Although every brownfield requires cleanup before reuse, some need more than others. 

Depending on the location and surrounding area, rehabilitation could be worthwhile. Some sites have found new lives as golf courses, offices, shopping areas, mixed-use spaces, and even solar farms. 

But none of this happens without investment, and even then, it could be years before a site is ready for development. However, with enough time, money, and work, formerly forgotten properties can find new life and return to the tax rolls. 

From Brown to Bright 

One type of brownfield receiving a lot of interest from the solar community these days is landfills. 

Landfills are disposal sites for municipal solid waste (MSW), construction and demolition debris (D&C), and hazardous waste. There are two types of facilities: Subtitle D programs, which include non-hazardous municipal and industrial solid waste, and Subtitle C programs, which accept hazardous waste. 

Depending on the location, your local dump can operate for decades, collecting and compacting community garbage. But, like everything else in life, the good times have to end eventually, setting the stage for decommissioning. 

Once the landfill reaches capacity, workers pack it down, install mitigation systems for gas and water to escape, cap it with soil and plants to prevent contamination, and closely monitor it for 30 years.  

While this might seem like the end of the story, solar energy is breathing new life into former dumps. 

Making Something Out of Nothing 

According to a 2021 RMI report, the U.S. has over 10,000 closed or inactive landfill sites. 

Seeing an opportunity, the EPA launched the RE-Powering America’s Land Initiative. The program promotes renewable energy projects on former industrial sites like landfills, mines, and other forgotten places. 

So far, the RE-Powering program has completed 530 projects and installed 2,580 MW of power, including 93% from solar and 5% wind. Even more importantly, the program has completed brownfield redevelopment projects in nearly every U.S. state

Every state is different, but some offer financial incentives or streamlined permitting processes to rehabilitate brownfields. Certain states, like New Jersey, New York, and Massachusetts, offer both! 

But what has the program done for former dumping grounds? 

Small Projects, Massive Impact 

Of the 530 projects touted by the RE-Powering program, 60% (318) sit on top of landfills or landfill buffers. Though most of the solar projects generate less than 5MW of power, 16 produce more than 20MW of electricity. 

The EPA’s RE-Powering program is only one of many federal, state, and local projects promoting brownfield redevelopment. For example, Governmental agencies like the Departments of Energy and Transportation tackle national initiatives, while others, like the Appalachian Regional Commission, focus on specific areas. 

According to the EPA, its programs and grants, including the Brownfields Revitalization Act, are making a difference. Through 2023, grant recipients leveraged about $20 per EPA brownfield grant dollar received. But grant money is often only one part of the brownfield puzzle. The agency highlights strong partnerships between local governments, organizations, and public/private groups to find more money. 

Despite the financial costs, federal, state, and local initiatives are addressing several long-term issues at the same time. They are finding new and creative ways to reuse brownfields and meet increasing electricity demand. 

Why Landfills Make Great Solar Sites 

Let’s be real: landfills are often not great spots to put a community park. However, they’re excellent places to set up a solar site. 

But what makes a landfill conversion so alluring for solar development? Turns out former dumping grounds are a popular choice for several reasons. 

  • Landfills are not prime real estate development targets. They require money, time, and labor to rehabilitate and carry the stigma of former pollution. 
  • Dumps tend to be in areas near roads and electrical transmission lines. Their placement makes it easier for solar energy producers to move power from the site to the electrical grid. 
  • Landfill sites may already be zoned for renewable energy development, streamlining the planning and permitting process. 
  • Solar sites near populated areas like towns may have access to guaranteed power buyers, especially in high-demand regions. 
  • Landfills have a welcoming landscape for solar energy, with little shade, unobstructed views, and even hilltop access in some instances. 
  • The land is typically cheap, making it attractive for some buyers willing to pay for rehabilitation. 
  • Depending on their size, dumps can accommodate community- or even utility-scale projects. 

Combine this with the growing number of local and state incentives available, and it makes sense why landfills have become part of the clean energy game plan. 

Potential Concerns 

Like any other prospective site, former landfills come with considerations affecting the project. 

Brownfields require special attention because of former pollution, hazardous waste, or other environmental concerns. Bulldozing everything in sight creates more problems than solutions, and developers must show restraint. 

Solar developers need to be careful around the cap.  

Grading the land is one of the first things developers do when they install a solar array. Unfortunately, grating and excavating to level land for the solar racking can damage the cap. If equipment damages the cap, contaminants and gas could escape into the air and water. 

To prevent unnecessary damage, stage heavy equipment away from the cap. If crews need to grade or excavate the area, do it carefully. And ALWAYS follow state and federal rules to avoid dangerous situations. 

Don’t penetrate the cap or damage the landfill’s mitigation system. 

The cap prevents methane and other gases from escaping outside specially controlled areas. Damage to the system could result in dangerous leaks that put the entire operation at risk. 

If an employee damages the mitigation, monitoring, piping, or other systems, it could result in dangerous gases escaping. The gas could then ignite if it encounters an accidental spark or arc. 

Dust poses a risk to workers and the community. 

Dust is simply part of the job during every solar installation but takes on a different tone at a landfill site. 

During grading and installation for a standard solar project, most crews use water trucks to moisten dirt and keep dust from flying around. The problem is that water trucks are heavy. 

Heavy water trucks and other equipment can damage underground gas and drainage systems. They should not drive on the cap if they don’t need to and be careful when required to be near fragile systems.  

Erosion and stormwater runoff are always a threat. 

Landfills have systems in place to remove water from a capped site. When rain or other liquid enters the landfill, these systems quickly flush it out to prevent damage. 

When crews grade and excavate sites, it opens the door for moisture to enter the system. Grading removes vegetation and dirt from the top of the cap, allowing water to penetrate. When that happens, it can flood landfill gas piping, preventing gas extraction. 

Hard rain can cause more cap erosion and slope instability, reducing the cap’s effectiveness. 

New Life for Old Sites 

Thanks to their location and design, landfills have become an attractive choice for solar companies. 

Beyond generating low-cost electricity on redeveloped land, landfill solar farms create a host of other benefits, including: 

  • High-paying jobs in a rapidly expanding solar industry 
  • Increase tax revenue for communities where solar farms live. Solar companies reintroduce vacant or abandoned properties to the tax roll. 
  • Fewer brownfields. When companies clean up and redevelop sites, they remove many (but not all) contaminants from the location. 

As solar energy expands across the U.S., more landfills will inevitably become solar sites. For solar EPCs, utilities, and innovative companies, there are plenty of opportunities to take advantage of ongoing development programs.  

These programs streamline the solar process, especially in states embracing renewable energy across the Northeast and mid-Atlantic. Other programs may be available on a state-by-state basis but could require more research. 

Are you interested in brownfield redevelopment? Programs like the RE-Powering America’s Land Initiative are changing the landscape, but it’s a long-term effort requiring time, money, and work. 

Talk with your state’s environmental representatives or contact your regional EPA office to learn more.

Making the Case for Prefabricated Solar PV Wire Solutions

Driving past a solar installation sometimes feels daunting. Arrays can have dozens of rows of panels, stretching on for what feels like miles. 

Not only are some solar energy projects massive, but they’re also complex. Companies have hundreds of variables to consider, and the process takes years from initial planning to completion. They also cost millions of dollars between installing solar panels, securing permits, doing tests, and paying employees. 

Solar EPCs always try to manage costs, reduce installation times, and produce better results. While hard costs like solar panels and PV wire have fallen over the years, soft costs like permitting, taxes, and labor haven’t shown the same decline. 

How can companies save money on soft costs? The answer may be found in the wire holding everything together. 

Small Cost, Massive Impact 

When we look at the total cost of a utility-scale solar energy system, PV wire is low on the list. 

However, choosing the right solar wire can save time and money on your solar project installation. For example, prefabricated wires have a higher upfront cost but slash installation times. 

So, how do bundled, prefabricated solutions make the most of their engineering to save time and money? It all comes down to ease of use, consistency, and automation. 

When combined, teams can shave hours and dollars off their projects without additional effort. 

Why Do Installers Choose Pre-Fab Solutions? 

Despite all the planning and effort, sometimes you get what you pay for. 

Using single PV cables for a rooftop solar system is fine, but they can slow a utility-scale project to a crawl. Bundled pre-fab cables remove constant trips up and down each row, replacing them with one pass. 

For the average project, not making multiple trips shaves hours off each row and days off a project. But beyond faster installations, why are solar companies choosing pre-fab wire products? 

Wires are Pre-Cut and Factory Assembled 

What is the difference between a pair of jeans purchased off the rack and a custom-tailored pair? 

Jeans from the store come in many sizes, but they only offer a general fit. Meanwhile, custom-tailored jeans are specifically manufactured to fit you and only you. The same concept applies to buying single wire reels versus pre-fab bundled wire. 

Manufacturers cut pre-fab bundled cable to specific lengths matching the project’s layout, preventing wasted wire. The manufacturer also properly installs connectors, performs quality control testing, adds labels, and mounts the cable to reels. 

Not only are the manufactured cables ready to install as soon as they reach the job site, but workers don’t have to cut, crimp, or install connectors themselves. 

Less Room for Mistakes 

Employees on the job site often have varying skill levels and experience. 

Small mistakes, like a loose connection, can have dangerous implications. Fires, arcs, and shorts may cause severe damage and cost hundreds of thousands of dollars to repair or replace. 

Factory testing eliminates many issues before installation occurs. The manufacturer is also much more consistent than multiple workers on the job site. 

The other thing installers like about pre-fab wire solutions is the exact measurements used to cut each wire to length. Single wire reels often create waste during installation. Despite the higher cost, pre-fab solutions limit scrap and speed up installs because workers can immediately use them. 

Building on Labor Savings 

Pre-fab solar power cables help workers make fewer mistakes, but do they make installers faster?  
 
Instead of walking cables one at a time down the row to each solar panel, installers make one trip with all the cables. Once they reach the end of the row, they walk back down and connect each wire in the bundle to its corresponding panel. Customers can have cables marked as well, further reducing accidents and miscommunication. 

Pre-fab solutions, including bundled wire, limit opportunities for mistakes. The faster speeds also reduce labor costs dramatically, sometimes by as much as 80%.

Besides allowing works to move more swiftly on the worksite, pre-fab solutions also make solar installation teams more efficient. In many states, including those across the Northeast, solar projects ramp up in the spring and slow down toward the end of fall for the winter season. The ebb and flow of project seasonality, which is a challenge for many solar companies. 
 
When teams are using pre-fab bundled wire, projects are completed more quickly with fewer people. In turn, crews can work on more jobs during the busy season, and companies benefit from better labor allocation and shorter ramp-up and ramp-down times. 

Safer Installs 

Prefabricated PV wires are easier to work with, simplifying the job. 

Think about field-made connectors for a second. Depending on the workers’ experience, they could make mistakes as they strip, crimp, and attach connectors to the wires. While issues may not appear immediately, they could develop over the long term, limiting power generation. 

Bundled solutions remove the guesswork from the installation process. Workers only attach the connectors to the panels and the combiner box to power the system. 

Beyond being easy to use, prefabricated bundled wire is also cleaner, as there’s only one bundle of wires to worry about. The result is an organized installation with fewer mix-ups and nicer-looking outcomes free of tangled wire. 

Short- and Long-Term Savings 

Pre-fab wire solutions like bundled cable cost more than single cable options but save time and money on labor. 

Single wire reels work for small residential solar panel systems but bog down larger projects, like utility and community solar. Running single-wire reels is inefficient, more error-prone, and opens the door for waste. 

Combining the wires for a row together shortens installation times and gets workers on and off the site faster. Best yet, potential savings increase as the projects get bigger. 

Bundled Wire Leads to Better Installs 

The United States relies on clean energy more than ever, so investing in solar improvements is critical. 

Solar array technology has improved dramatically, from bifacial panels and tracking systems to more effective connectors and accessories. The same can be said for PV wire, too. 

Bundled PV wire solutions allow employees to do better work faster. Solar installations can then produce energy sooner, leading to lower electric bills for communities and businesses. 

That’s good news for everyone.